BEGIN:VCALENDAR VERSION:2.0 PRODID:-//https://www.dfp.ubc.ca//NONSGML iCalcreator 2.41.92// CALSCALE:GREGORIAN METHOD:PUBLISH UID:35326632-3038-4866-b532-376632303163 X-WR-RELCALID:efc09d74-9c93-479e-a94f-485231ddccde X-WR-TIMEZONE:America/Vancouver X-WR-CALNAME:Providing Explanations for Unsupervised Graph Learning Models - Hogun Park\, Associate Professor\, Sungkyunkwan University BEGIN:VTIMEZONE TZID:America/Vancouver TZUNTIL:20270314T100000Z BEGIN:STANDARD TZNAME:PST DTSTART:20241103T020000 TZOFFSETFROM:-0700 TZOFFSETTO:-0800 RDATE:20251102T020000 RDATE:20261101T020000 END:STANDARD BEGIN:DAYLIGHT TZNAME:PDT DTSTART:20250309T020000 TZOFFSETFROM:-0800 TZOFFSETTO:-0700 RDATE:20260308T020000 END:DAYLIGHT END:VTIMEZONE BEGIN:VEVENT UID:8777687d-b171-4b56-ad5e-f1db3354fd66 DTSTAMP:20251218T212748Z CLASS:PUBLIC CREATED:20250707T191503Z DESCRIPTION:Abstract: This talk presents advancements in providing explanat ions for unsupervised graph learning models. It highlights eXplainable AI (XAI)'s role in identifying influential subgraphs for graph learning model s. A key contribution\, the UNR-Explainer (ICLR 2024) \, generates counter factual explanations for unsupervised node representation learning models by using Monte Carlo Tree Search to find important subgraphs. Additionally \, the talk introduces the HINT-G framework (upcoming KDD 2025) \, which l everages influence functions to explain GNNs across supervised and unsuper vised settings… DTSTART;TZID=America/Vancouver:20250715T164500 DTEND;TZID=America/Vancouver:20250715T174500 LAST-MODIFIED:20250707T191940Z LOCATION:UBC Vancouver Campus\, Fried Kaiser (KAIS) building\, Room 2020/20 30\, 2332 Main Mall SUMMARY:Providing Explanations for Unsupervised Graph Learning Models - Hog un Park\, Associate Professor\, Sungkyunkwan University TRANSP:OPAQUE URL:https://www.dfp.ubc.ca/event/providing-explanations-unsupervised-graph- learning-models-hogun-park-associate-professor END:VEVENT END:VCALENDAR